READING:

Vector Graphics Animation with Time-Varying Topology

Boris Dalstein* Rémi Ronfard Michiel van de Panne
University of British Columbia Inria, Univ. Grenoble Alpes, LJK, France University of British Columbia
key key key key inbetween inbetween inbetween inbetween
vertex closed edge open edge face vertex closed edge open edge face
number 11 3 10 2 10 3 9 1

& space-time @ @ P

< visualization * O R &
time-slices

visualization ¢ o ‘ ’ @ ‘ O @

Legend

T e () (e ()) () ()

Space-time visualization Time-slices visualization

Figure 1: A space-time continuous 2D animation depicting a rotating torus, created without 3D tools. First, the animator draws key cells (in
blue) using 2D vector graphics tools. Then, he specifies how to interpolate them using inbetween cells (in green). Our contribution is a novei
data structure, called Vector Animation Complex (VAC), which enables such interaction paradigm.

Presenter:
Chenxi Liu

Topology in simple language

A field about incidence relationships.

Topology in simple language

Topology in simple language

https://www.youtube.com/watch?time_continue=2&v=9NIqYr6-TpA

https://www.youtube.com/watch?time_continue=2&v=9NlqYr6-TpA

Topology in 3D geometry processing

Exceptions

Topology-controlled Reconstruction of Multi-labelled Domains from
Cross-sections

ZHIYANG HUANG, Washington University in St. Louis
MING ZOU, Washington University in St. Louis
NATHAN CARR, Adobe Systems

TAQO JU, Washington University in St. Louis

mo
2
u1
H0,0
mo
HO
Ho

Un-constrained

(a) Input

Topology-constrained

Reconstruction Cutaway view Yellow label Green label

Fig. 1. Given several multi-labeled planes depicting the anatomical regions of a mouse brain (a), reconstruction without topology control (b1) leads to
redundant handles for the red and yellow labels (black arrows in c1, d1) and disconnection for the green label (e1). Our method (b2) allows the user to prescribe
the topology such that the red label has one tunnel (gray arrow in c2), the yellow label has no tunnels (d2), and the green label is connected (e2). The legends
in (b1,b2) report, for each label in the reconstruction, the genus of each surface component bounding that label (e.g., “0,0” means two surfaces each with genus
0). User-specified constraints are colored red.

2D Graphics

2D Graphics

https://media0.giphy.com/media/xT1TTHe611n64f511C/giphy.gif

https://media0.giphy.com/media/xT1TTHe611n64f5l1C/giphy.gif

Topological Modeling for Vector Graphics

Vector Graphics Complex (VGC) Vector Animation Complex (VAC)
SIGGRAPH’14 SIGGRAPH’15

9

Motivations

SVG:
A set of four basic primitives.

Motivations

(a) Shared edge in SVG (b) Shared edge + overlapping

Redundant to create;
No partial layering;
Hard to edit;
Hard to animate.

11

Motivations

two N \

non-connected

N

lines E—
two
connected =
lines —
(a) (b) ()

Figure 3.2: Whether or not two lines are connected affects: (a) rendering, such as here the rendering of a
Miter join; (b) user interaction, such as here a drag-and-drop action of one of the two lines; and (c) keyframe
interpolation.

12

Motivations

00

A. Basic Primitives At the very least, the following cells

must be supported: vertices (single points in space); open edges
®
(open curves starting and ending at a vertex); and triangles (sur-

faces homeomorphic to disks, bounded by three edges).

B. Basic Topological Operators Any two vertices can be ¥ ¥
glued. Any two edges can be glued using any of the two possi- * *

ble directions. Any edge can be cut by inserting an additional I I :
vertex. Any face can be cut by inserting an additional open edge ¥ ¥
starting and ending at existing boundary vertices. I I

C. Operator Invertibility The inverse of any valid operator m N ;

is also a valid operator. °

D. Operator Locality The validity of any topological oper- o—ole <_._>
ator (i.e., whether or not it is allowed to apply it) only depends / = J

on local topological properties. ¢ *

13

Stroke Graph

A graph (V, E), where each
edge Is a stroke.

[Whited et al. 2010]

14

Solution: VGC

1 class Cell {

2 std::unordered_set<Cell*> star,; ®

(O

) vertex

i class Vertex: public Cell { closed edge

i Point p; (start == end == nullptr)

i

v class Edge: public Cell { .

10 Vertex *start, *end;

1 DirectedCurve curve; start

12 }; end start
13

14+ class Halfedge {

15 Edge *edge;

1 bool direction; open edge open edge

17 }; (case start !'= end) (case start == end)

19 class Cycle {

20 Vertex #*steiner;

21 std::vector<Halfedge> halfedges;
22 };

2+ class Face: public Cell {
25 std::vector<Cycle> cycles;

2%} éx

two incident faces

x class VGC {
20 std::unordered_set<Cellx*> cells; v
%) }; f-;,—)cycles o [6-2(35 1(.'.(5(?'[3 1(.’-7: i PS L]

fi->cycles = [¢re, tes ey]

15

Solution: VGC

1 class Cell {
2 std::unordered_set<Cell*> star,;

3 };

5 class Vertex: public Cell {
b Point p;
ks

vy class Edge: public Cell {
10 Vertex *start, *end;
11 DirectedCurve curve;
12 };

13

14+ class Halfedge {

15 Edge *edge;

16 bool direction;

17 };

v class Cycle {

20 Vertex #*steiner;

21 std::vector<Halfedge> halfedges;
22 };

2+ class Face: public Cell {
25 std::vector<Cycle> cycles;

% };

2 class VGC {
29 std::unordered_set<Cellx*> cells;

30 } s

L
vertex
closed edge
(start == end == nullptr)
end
start
end start
open edge open edge
(case start !'= end) (case start == end)

two incident faces

fi->cycles = [¢ere, tey tey]

fa->cycles = [eze; egeg o7 v eg]

16

Solution: VGC

1 class Cell {
2 std::unordered_set <Cell*>

OO

5 class Vertex: public Cell {
b Point p;

>

vy class Edge: public Cell {
10 Vertex *start, *end;
11 DirectedCurve curve;
12 };

13

14+ class Halfedge {

15 Edge *edge;

16 bool direction;

17 };

v class Cycle {
20 Vertex #*steiner;

21 std::vector<Halfedge> halfedges;

22 };

2+ class Face: public Cell {

25 std::vector<Cycle> cycles;

% };

x class VGC {

29 std::unordered_set<Cellx*> cells;

30 } s

star; °
vertex
closed edge
(start == end == nullptr)
end
start
end start
open edge open edge D Iffe re nt :
(case start !'= end) (case start == end)

€3

two incident faces
fi->cycles = [¢ere, tey tey]

fa->cycles = [eze; egeg o7 v eg]

17

Solution: VGC

1 class Cell {
2 std::unordered_set<Cell*> star,;

3 };

5 class Vertex: public Cell {
b Point p;
ks

vy class Edge: public Cell {
10 Vertex *start, *end;
11 DirectedCurve curve;
12 };

13

14+ class Halfedge {

15 Edge *edge;

16 bool direction;

17 };

v class Cycle {

20 Vertex #*steiner;

21 std::vector<Halfedge> halfedges;
22 };

2+ class Face: public Cell {
25 std::vector<Cycle> cycles;

% };

2 class VGC {
29 std::unordered_set<Cellx*> cells;

30 } s

L
vertex
closed edge
(start == end == nullptr)
end
start
end start
open edge open edge
(case start !'= end) (case start == end)

fi->cycles = [¢ere, tey tey]

fa->cycles = [eze; egeg o7 v eg]

18

Solution: VGC

11
12
13
1

15

7}

class Cell {
std::unordered_set<Cell*> star,;

F;

class Vertex: public Cell {
Point p;
b

class Edge: public Cell {
Vertex *start, *end;
DirectedCurve curve;

}s

class Halfedge {
Edge *edge;
bool direction;

class Cycle {
Vertex #*steiner;
std::vector<Halfedge> halfedges;

2 };

class Face: public Cell {
std::vector<Cycle> cycles;

o };

class VGC {
std::unordered_set<Cellx*> cells;

3w };

start

L
vertex
closed edge
(start == end == nullptr)
end
end start
open edge open edge
(case start !'= end) (case start == end)

fi->cycles = [¢ere, tey tey]

fa->cycles = [eze; egeg o7 v eg]

19

Solution: VGC

1 class Cell {
std::unordered_set<Cell*> star,; ®

3 };

vertex

closed edge
start == end == nullptr)

5 class Vertex: public Cell {
b Point p;
ks

vy class Edge: public Cell {
10 Vertex *start, *end;
11 DirectedCurve curve;

" }; end start
13

14+ class Halfedge {

15 Edge *edge;

16 bool direction; open edge open edge
7} (case start !'= end) (case start == end)

v class Cycle {
20 Vertex #*steiner;

21 std::vector<Halfedge> halfedges;
22 };

2+ class Face: public Cell {
25 std::vector<Cycle> cycles;

% };

2 class VGC {
20 std::unordered_set<Cellx*> cells;
W }; fa->cycles = [eze; ‘egeg er: vi eg |

fi->cycles = [¢ere, tey tey]

20

supported Operations

00

I‘:l A Glue I.-.‘A I" UnGlue_ |' | A

Glue \ UnGlue \

= > e . E—

/ /
Im = l B I UnGlue I;\ -

_J

Figure 14: Examples of glue and unglue operations on vertices,
edges, and a set of cells (bottom-right).

l_l Cut |_: |:| UnCut |:I
0-=0 Q=0
00 O s O
— - N -
Cut I | UnCut | |
ole-[Tol|}_|*|,

UnCut
—_—

Figure 15: Examples of cut and uncut operations on vertices and
edges. The third operation on the right column illustrates uncutting
a Steiner vertex from a face. It is topology equivalent to the fifth
operation on the same column. The fifth example on left column is
a failure case, when the cut algorithm transfers the “hole cycle” to
the wrong face (shown in red). This happens because the cut oper-
ator is actually ambiguous and disambiguation require geometric

heuristics to capture the user’s intent.
21

Results

Figure 20: A user experimenting with the possibilities offered by

invisibe cuts and depth ordering.

Figure 19: Examples of non-manifold topologies where an edge
has three “face uses”. These uses may be by the same face (middle
and right), and part of a hole (right)

22

2D Animation

t
————————————————————————————-

Standard 2D animation:
Geometric Interpolation

23

2D Animation

Can we interpolate
topology?

——————

Standard 2D animation:
Geometric Interpolation

24

Solution: VAC

t
IEEEEEEEEEE——N

Keyframes: VGC

Solution: VAC

In-between vertex

o

Solution: VAC

In-between vertices

Solution: VAC

In-between edge]

t
IEEEEEEEEEE——N

Solution: VAC

In-between edge]

t
IEEEEEEEEEE——N

Solution: VAC

r \ &
before | after
cycle cycle
Inbetween closed edge
Space-time visualization

Interpolate close edges and
faces.

30

eﬁaﬁﬁ

)

31

20 Double Linked-List

Results

00

https://www.borisdalstein.com/research/vac/

32

https://www.borisdalstein.com/research/vac/

Comments

« The real insight of Boris’s work is in his technical
report and thesis. It’s a topological space called
PCS complex, which is constructed by applying

multiple (un)glue and (un)cut to basic primitives.
And an exhaustive classification of the 19

different ways a face can be cut along an edge.

» Yet, the catch is PCS can’t be rendered using the
winding rule, thus VGC has to be defined by
dropping the orientability and genus. The result is
inevitable ambiguities in cutting (solved by
unclear heuristics in practice).

33

Comments (continued)

« Limitations:
* No continuity constraint across joint;
 No boolean operation;

« No self-intersecting face (due to the same PCS
rendering problem).

| think there may be a connection between the
VGC and the NPR rendering of a 3D model. But
how VGC may benefit the line drawing rendering

s still unclear... THANKS!)

